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Abstract

In the present paper, the procedure for successive iteration method proposed by Mori and Wakashima [Microme-

chanics and Inhomogeneity, 1990] to estimate the effective elastic moduli of composite materials is reviewed. It is

observed that the formulations of the method could be modified and generalized by introducing a parameter called

concentration factor in the expression of the equivalent eigenstrain. The concentration factor introduced reflects the

approximation to the interaction among the reinforcing particles in a composite. With the proper choice of the con-

centration factor, the dilute and Mori–Tanaka models can be obtained as the specific cases of the modified formula-

tions. The properties of the concentration factor are discussed. Numerical examples show a way to determine the factor

through known experimental or numerical results of the considered problems. � 2002 Elsevier Science Ltd. All rights

reserved.
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1. Introduction

Prediction and estimation of effective elastic properties of composite materials with inclusions are of
great interest to researchers and engineers in many science and engineering disciplines. In dealing with how
the material properties of each component and microgeometry influence the overall response of composite
materials, a number of approximate approaches have been proposed in literature. Those received most
attention are dilute, Mori–Tanaka, self-consistent and differential schemes (Mura, 1987; Aboudi, 1991).
Based on the concept of stress and strain concentration matrix (Benveniste, 1987), these methods can be
expressed in a unified form (Dunn and Taya, 1993), in which only the concentration matrices have different
expressions for the different prediction models. These concentration matrices are obtained through various

International Journal of Solids and Structures 39 (2002) 649–657

www.elsevier.com/locate/ijsolstr

* Corresponding author. Address: Institute of High Performance Computing, 89C Science Park Drive, #02-11/12 The Rutherford,

Singapore 118261. Tel.: +0065-874-8934.

E-mail address: mpelup@nus.edu.sg (P. Lu).

0020-7683/02/$ - see front matter � 2002 Elsevier Science Ltd. All rights reserved.

PII: S0020-7683 (01 )00162-7



approximations. As it is known, the interaction between the inhomogeneous inclusions is an open problem
and its analytical solution is virtually impossible. The various interaction models in literature, despite based
on rigorous mathematical derivations, are still approximate predications and are usually only applicable to
specific cases. Therefore, improving existed models based on some physical analysis may offer a simple but
effective way to construct satisfied predicating models. The present work tries to make an attempt in this
way.

In the paper of Mori and Wakashima (1990), a successive iteration method was proposed to evaluate the
stress and strain disturbances due to inhomogeneities in a composite. The method offers a physical basis of
the average field approach. By investigating the process and physical relations of the method, it is observed
that the formulations of the method could be extended to get a more general model. In the present paper,
some properties in the successive iteration method are discussed. A concept called concentration factor is
introduced into the theoretical framework, which reflects the influence of the interactions between inho-
mogeneities. In general, the introduced concentration factor is the function of phase volume fraction and
shapes of the inhomogeneities. For a considered composite material, it could be determined through the
known properties of the material such as experimental data and numerical results etc. By introducing the
concentration factor, a modified model to predict the overall properties of materials is provided. It could be
considered as an extension of the formulations obtained by the successive iteration method.

In the next section, the successive iteration method is briefly reviewed. The improved treatment is then
discussed in Section 3 and the examples of two-phase elastic composites with randomly distributed elastic
spheres are given in Section 4 to show the validity of the modified prediction model.

2. Successive iteration method and modification

Consider a body, D, which consists of a matrix and a large number of randomly distributed ellipsoidal
inhomogeneities X. The elastic stiffnesses of the matrix and inhomogeneities are C and C�, respectively. Let
the displacement at the boundary of the body is prescribed. The prescribed displacement produces a
uniform strain c0 and stress r0 in the homogeneous body without containing the inhomogeneities:

r0 ¼ Cc0; c0 ¼ C�1r0: ð1Þ

Since the body contains the inhomogeneities, the strain changes to c0 þ c and the stress to r0 þ r. The terms
c and r are called disturbances due to the presence of the inhomogeneities. Since the strain is prescribed, the
average of the disturbed strain must vanish (Mura, 1987), i.e.

f hciX þ ð1� f ÞhciM ¼ 0; ð2Þ

where h	iX and h	iM denote the averages of relevant quantities over the inhomogeneities and matrix, re-
spectively, and f is the volume fraction of the inhomogeneities. The average fields hciM, hciX as well as hriM
and hriX can be obtained from relation (2) and equivalent inclusion method (Mura, 1987). They are solved
as

hciM ¼ �fSe�; hciX ¼ ð1� f ÞSe� ð3Þ

and

hriM ¼ ChciM; hriX ¼ CðhciM � e�Þ; ð4Þ

where S is Eshelby tensor for the equivalent inclusion, Eshelby (1957), and e� is the equivalent eigenstrains.
It is seen that as soon as the equivalent eigenstrains e� is determined properly, the average fields and overall
elastic constants of the composite are readily obtained.
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The successive iteration method therefore provides an approximate procedure to evaluate e� as well as
average fields. The method consists of the following procedures: The stress disturbance in a single repre-
sentative inhomogeneity is evaluated at first. Then, the contribution of the other inhomogeneities is taken
into account by considering that the representative inhomogeneity feels the additional field by the other
inhomogeneities. These processes are repeated. In this way, the equivalent eigenstrains e� can be obtained in
series form as

e� ¼ e�0 þ e�1 þ e�2 þ 	 	 	 ; ð5Þ

where

e�i ¼ �fBe�i�1 ð6Þ

and

B ¼ Z�1ðC� C�ÞS; Z ¼ ðC� � CÞSþ C: ð7Þ
When the magnitude of every eigenvalue of �fB is less than one, and the correction procedures are re-
peated infinite times, the series (5) converges to the expression of

e� ¼ ðIþ fBÞ�1e�0 ð8Þ

after substitution of the relation (6). Here e�0 is the equivalent eigenstrain when only a single inhomogeneity
is considered, and is obtained as

e�0 ¼ Z�1ðC� C�Þc0: ð9Þ

It is seen that the successive iteration method is a repeating process to obtain the approximate equivalent
eigenstrains e� given in Eqs. (5)–(9) and (6) is the fundamental relation of the approach. Based on the
relation, the limiting case of the successive iteration method is found equivalent to the Mori–Tanaka model.
It means that under the approximation of Eq. (6), the successive iteration method can only reach the ac-
curacy of the Mori–Tanaka method at most. Therefore, one might intuitively argue that a correction factor
corresponding to but differing from �fB in Eq. (6) can be used so that the successive iteration method can
provide better predictions. It was pointed out but was not discussed further by Mori and Wakashima
(1990). To do so, the correction factor in Eq. (6) could be modified as

e�i ¼ �bBe�i�1 ð10Þ

in which the volume fraction of the inclusions in Eq. (6) is replaced by a generalized parameter b. It is noted
that the modified relation (10) is introduced to have similar form as Eq. (6). It is to ensure that the overall
stiffness obtained through the relation is still the inverse of the overall compliance. Although Eq. (10) has a
similar form as Eq. (6), expression (10) has a more general physic meaning. Generally, the analytical form
of b cannot be obtained because the interactions between inhomogeneities are very complicated. Since b is
basically the function of volume fraction, inhomogeneity shapes and other material properties for a con-
sidered problem, Eq. (10) provides a way to improve the approximations by optimizing the parameter b. By
setting b ¼ f , the relation (10) returns to the conventional expression (6). Therefore, Eq. (10) can be
considered as the generalization of Eq. (6). Furthermore, Eq. (8) can be written as

e� ¼ ðIþ bBÞ�1e�0: ð11Þ

With the modified relations (10) and (11), the average stress disturbances hriM and hriX in the matrix
and inhomogeneities are obtained by substituting Eqs. (3) and (11) into Eq. (4), respectively, as

hriM ¼ �fCSðIþ bBÞ�1e�0; hriX ¼ C½ð1� f ÞS� I�ðIþ bBÞ�1e�0: ð12Þ

Furthermore, the average stress disturbance over the body is given by
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hri ¼ f hriX þ ð1� f ÞhriM: ð13Þ

Substitution of Eqs. (9) and (12) into Eq. (13) yields

hri ¼ �fCðIþ bBÞ�1
Z�1ðC� C�Þc0: ð14Þ

3. Modified model for prediction of effective elastic moduli

Following the discussion of the last section, the average stress, r, over the body is defined by

r ¼ C�cc; ð15Þ
where C is overall elastic moduli and �cc ¼ c0 by the average strain theorem (Aboudi, 1991). According to the
definition, the above average stress can be written as

Cc0 ¼ Cc0 þ hri: ð16Þ
By using the relation (14), the overall elastic moduli, C, is obtained as

C ¼ CfIþ f ½ð1� bÞðC� � CÞSþ C��1ðC� � CÞg: ð17Þ
It is seen that some of commonly used prediction models can be derived from the above expression. To

show it, we write out the explicit expressions of the dilute and Mori–Tanaka models as

C
dil ¼ CfIþ f ½ðC� � CÞSþ C��1ðC� � CÞg; ð18Þ

C
M–T ¼ CfIþ f ½ð1� f ÞðC� � CÞSþ C��1ðC� � CÞg; ð19Þ

where the superscripts dil and M–T indicate dilute and Mori–Tanaka models, respectively. It is seen that
the expression (17) is reduced to the dilute and the Mori–Tanaka models, respectively, when the parameter
b is chosen to be zero and f, respectively. This indicates that b is indeed a parameter to influence the
prediction results. By changing the parameter, different models can be obtained. With proper optimization
of b, one could attain better prediction results. Therefore, the parameter b is introduced on the physical
basis. With the modification, the formulations of the successive iteration method are extended to more
general cases.

Defining the concentration factor a to be

a ¼ 1� b; ð20Þ
Eq. (17) can be written in a more concise form as

C ¼ CfIþ f ½aðC� � CÞSþ C��1ðC� � CÞg: ð21Þ
Same as the parameter b, the concentration factor a is also a parameter reflecting the influence of the
interaction among the inhomogeneities, and generally depends on many variables, such as volume frac-
tions, shapes of the inhomogeneities, material properties of both matrix and inhomogeneities etc. Due to
the complexity of a real problem, it is impossible to obtain a general analytical form of a through math-
ematical derivations.

Unlike most of existed prediction models, the expression (17) or (20) contains an unfixed parameter. It
makes the formulation more adjustable. One can determine the parameter approximately based on some
known information of considered materials, such as numerical and experimental results etc. In this way,
some properties of the composite can be well included, which may be omitted through various assumptions
or could not be considered well due to the restriction of mathematical treatments. Although a large amount
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of prediction models and methods by using micromechanics and mathematical derivations have been re-
ported in the literature, none of them is universal applicable. Since some properties, such as interactions
among inhomogeneities etc., are impossible to be clearly described analytically, every theory prediction
method is virtually based on some specific assumptions and approximations, and hence has lost some useful
information. This will certainly influence prediction accuracy. To capture the lost information, which could
not be obtained by analytical method, in certain degree, some parameters can be introduced into the theory
model and are determined through some known material properties. In this way, the modified model should
be improved. Therefore, it is a simple but effective treatment to improve the prediction results.

If the influence of volume fraction f is considered only for simplicity, the concentration factor a can be
expressed in the function of f . By examining Eq. (21), it is found that a should equal zero if the body is fully
filled by the inhomogeneities. Therefore, in polynomial the concentration factor a may have the form

a ¼ ð1� f Þð1þ a1f þ a2f 2 þ a3f 3 þ 	 	 	Þ; ð22Þ
where a1; a2; a3; . . ., are coefficients, which can be determined through the known information of the con-
sidered materials. By setting a1 ¼ a2 ¼ 	 	 	 ¼ 0, Eq. (22) is reduced to the approximation for Mori–Tanaka
model, which is also the limiting case of the successive iteration method under the approximation of the
relation (6). Therefore, Eq. (21) could be considered as a generalization of the expression derived from of
the successive iteration method.

4. Examples and discussion

As indicated before, the concentration factor can be obtained through some known information of
considered materials. In this section, we show a treatment to determine the concentration factor according
to available experiment data. As examples, the experimental data for the materials of two-phase elastic
composites with randomly distributed elastic spheres, recorded by Smith (1976) and Richard (1975), are
used here. The material properties involved in these two experiments are: (i) E ¼ 3 GPa, m ¼ 0:4, E� ¼
76 GPa and m� ¼ 0:23 from Smith’s data; (ii) E ¼ 1:69 GPa ð¼ 2:45� 105 psiÞ, m ¼ 0:444, E� ¼
70:33 GPa ð¼ 102� 105 psiÞ and m� ¼ 0:21 from Richard’s data. Here, E and m are the Young’s modulus
and Poisson’s ratio of the matrix, respectively; E� and m� are ones of the spherical inhomogeneities.

The relationships between the general elastic stiffnesses Cijkl and the material constants E and m are given
by (Aboudi, 1991):

Cijkl ¼
Em

ð1þ mÞð1� 2mÞ dijdkl þ lðdikdjl þ dildjkÞ; ð23Þ

where

l ¼ E
2ð1þ mÞ ð24Þ

is shear modulus and dij is the Kronecker delta. Based on Eq. (23), the Eshelby tensor S for a spherical
isotropic inclusion can be written as (Mura, 1987)

S1111 ¼ S2222 ¼ S3333 ¼
7� 5m�

15ð1� m�Þ ; S1212 ¼ S2323 ¼ S3131 ¼
4� 5m�

15ð1� m�Þ ;

S1122 ¼ S2233 ¼ S3311 ¼ S1133 ¼ S2211 ¼ S3322 ¼
5m� � 1

15ð1� m�Þ :
ð25Þ

The experimental data by Smith (1976) are listed in Table 1, in which f is the volume fraction of the
spherical inhomogeneities, E the overall Young’s modulus, l and �ll are the matrix and the overall shear
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modulus, respectively. Since only the effect of volume fraction is taken to be variable in the experimental
data of Table 1, the concentration factor can be written in the form of Eq. (22). According to Table 1, the
values of the concentration factor a at the known data of volume fractions and overall properties can be
determined by solving Eq. (21):

a ¼ ½f ðC� � CÞðC�1C� IÞ�1 � C�S�1ðC� � CÞ�1
: ð26Þ

The calculated results based on the data in Table 1 are listed in Table 2.
By using the results of f and a listed in Table 2, the coefficients in Eq. (22) can be determined. If only

three terms of the polynomial are considered, the coefficients a1, a2 and a3 can be determined according to
three groups of values f and a in Table 2. Taking, for example, f¼ 0.1, 0.3, 0.495 and corresponding a
¼ 0.8, 0.565, 0.265 respectively, the coefficients a1, a2 and a3 are obtained by substituting the relevant f and
a into Eq. (22): a1 ¼ �1:64662, a2 ¼ 6:95964, a3 ¼ �10:04591. Therefore, the approximate concentration
factor a for this problem can be obtained as

a ¼ ð1� f Þð1� 1:64662f þ 6:95964f 2 � 10:04591f 3Þ: ð27Þ

Fig. 1 shows the comparison of the concentration factors a for different prediction models. It can be seen
that the curve by including the information of the experimental results is lower than that of Mori–Tanaka
model for this problem, and the relation 06 a6 1 exists for all cases. Figs. 2 and 3 show the predictions of
the effective Young’s modulus E and effective shear modulus �ll versus volume fraction f according to dif-
ferent models. The experimental data were recorded by Smith (1976). It is observed that the agreement

Table 1

Experimental data recorded by Smith (1976)

f 0 0.1 0.225 0.3 0.398 0.495

EðGPaÞ 3 3.75 5.1 6 7.9 12.1

�ll=l 1 1.25 1.7 2 2.67 4.12

Table 2

Approximate results calculated from Eq. (27)

f 0 0.1 0.225 0.3 0.398 0.495

a 1 0.8 0.625 0.565 0.445 0.265

Fig. 1. Comparison of the concentration factors a for the different micromechanical models.
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between the predictions of the modified model and experimental data is very good for both effective
Young’s modulus and effective shear modulus. It is due to the reason that the concentration factor a for the
modified model is improved according to the known experimental data of the materials. Therefore, some
properties of the composite are included. It should be pointed out that it is not just a simple curve fitting.
With the modification, some matrix/inclusion interaction and microstructure properties of the composites
with similar material systems, which are unable to be described by mathematical models but may be
captured by the information of experimental results, can be included into the modified model. In case that
theory model could not provide ideal prediction, a modification according to known results is a reasonable
alternative choice.

Generally, the concentration factor a should vary with material properties, shapes of inhomogeneities
etc. Therefore, a are different for different problems. However, for the composites with similar material
system and structures, i.e. same phase number and microgeometry of inhomogeneities etc., related con-
centration factors should be similar. To verify the deduction, the approximate concentration factor (27),
which is obtained according to the experimental data of the material used by Smith (1976), is used to

Fig. 2. Comparison of the micromechanical predictions and the experimental results by Smith (1976) for the effective Young’s modulus

E as a function of particle volume fraction.

Fig. 3. Comparison of the micromechanical predictions and the experimental results by Smith (1976) for the effective shear modulus �ll
as a function of particle volume fraction.
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predict the overall properties of another composite material used by Richard (1975). As described, these
two materials have similar structures, two-phase elastic composites with randomly distributed elastic
spheres. Fig. 4 shows the prediction results. It is seen that with the concentration factor (27), the modified
model still can provide a much better prediction than those by Mori–Tanaka and dilute models. This
example provides a support on the above deduction. For different material systems, however, care should
be taken because the material properties included in the concentration factor for one material system may
not suitable for other material systems.

5. Concluding remarks

By examining the procedure of the successive iteration method, a modified model is suggested to
predicate effective properties of composite material containing randomly dispersed inhomogeneities. The
modified model can be considered to be a generalization of the formulations of the successive iteration
method. In the modified model, the parameter called concentration factor is introduced on the physical
basis. Since the concentration factor can be determined through the experimental data and some other
useful information of considered material, the modified model can provide a better prediction. For further
work, the properties of the concentration factor a should be investigated.

The method used in this paper is an alternative attempt to construct modified prediction models. Some
concepts and basic treatments are introduced. To have the method more applicable, there are still some
problems to be solved.
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